Hier könnt ihr euch zu jedem Thema selber eine Note vergeben, so dass ihr am Ende des Kurses einen Überblick über die Themen habt, die ihr noch üben müsst bzw. in der Praxis beherrscht.

3.9 Differentialrechnung I: Ableitung (Potenz-, Faktor- und Summenregel)

Merke dir die Regel:	Die Regel in eigenen Worten	Beispiel	Übungen
Die Steigung m einer Tangenten	In dieser Spatte f	a) Bestimme die Steigung <i>m</i> der	1) Bestimme die Steigung <i>m</i> der
durch den Punkt $P(x_0 f(x_0))$ der		Tangenten durch den Punkt	Tangenten durch den Punkt
Funktion $f(x)$ ist identisch mit	sieser niele, v	werden nicht $P(2 f(2))$ einer Funktion	
$\operatorname{der} \mathbf{Ableitung} f'(x) \operatorname{von} f(x)$	In dieser Spate fi In dieser Spate die die Beispiele, die vorgenesst die	mit f'(2) = 5.	P(0 f(0)) einer Funktion
an der Stelle $x_0 : m = f'(x_0)$	In dieser Spate fi In dieser Spate et die Beispiele die Vorzerechnet Vorzerechnet Vabschreiber Abschreiber	werder nich werder nich se also nich se also nich se also nich mit $f'(2) = 5$. f'(2) = 5 $\Rightarrow m = f'(2) = 5$	mit f'(0) = 3
Allgem. Ableitungsregeln:	abser som	$\Rightarrow m = f'(2) = 5$	
Potenzregel : Hochzahl als Faktor nach vorne schreiben und über dem x um eins verringern. $f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$		b) $f(x) = x^3 \Rightarrow f'(x) = 3x^2$ $f(x) = x^{-2} \Rightarrow f'(x) = -2x^{-3}$ $f(x) = x^5 \Rightarrow f'(x) = 5x^4$	2) Berechne die Ableitung $f'(x)$ a) $f(x) = x^2$ b) $f(x) = x^6$
Faktorregel : Bei einem Produkt wird nur der Term mit x abgeleitet $f(x) = c \cdot g(x) \Rightarrow f'(x) = c \cdot g'(x)$	In dieser Spalte könnt ihr euch Notize	c) $f(x) = 3x^4 \Rightarrow f'(x) = 12x^3$ $f(x) = 2x^5 \Rightarrow f'(x) = 10x^4$ $f(x) = 5x^{-3} \Rightarrow f'(x) = -15x^{-4}$	3) Berechne die Ableitung $f'(x)$ a) $f(x) = 3x^{-3}$ b) $f(x) = \frac{1}{2} \cdot x^3$
Summenregel: jeder Summand wird	machen.	d) $f(x) = 3x^2 + 5x - x^3$	4) Bestimme $f'(x)$
einzeln abgeleitet.		$\Rightarrow f'(x) = 6x + 5 - 3x^2$	a) $f(x) = \frac{1}{8}x^4 + \frac{1}{6}x^3 - \frac{1}{5}x^5$
f(x) = g(x) + h(x)			
$\Rightarrow f'(x) = g'(x) + h'(x)$			b) $f(x) = \frac{1}{2}x^3 - 3x^2 + 2$

© Vom Minus zum Plus

Seite -19- ww

www.gute-Note.de

Hier findet ihr Aufgaben, um zu testen, ob ihr die Theorie in die Praxis umsetzen könnt.